

NPSH

Минимальные рабочие значения, которые могут быть достигнуты на всасе приводной части насоса должны быть ограничены во избежание начала кавитации.

Кавитация — это процесс образования пузырьков наполненных парами жидкости, а также газами выделяющимися из жидкости в результате чего давление в данном месте снижается до критического значения, равно или ниже давления насыщенных паров жидкости. Пузырьки, наполненные парами и газами выделившимися из жидкости, перемещаются вместе с потоком и, при достижении области более высокого давления разрушаются и создают волну гидравлического удара, передаваемую к стенкам, которые подвергаются циклу напряжений, постепенно поддаваясь пластической деформации вследствие износа (кавитационная эрозия). Данное явление сопровождается характерным "металлическим" шумом, который возникает от удара о стены трубы и называется начальной кавитацией.

Разрушение по причине кавитации может быть усилено электрохимической коррозией, местный перегрев в результате пластической деформации стен. Материалы, которые обеспечивают самое высокое сопротивление перегреву и коррозии, сделаны из высоколегированной стали, в особых случаях из аустенитной стали. Начальная кавитация может быть определена, обратившись к технической литературе, путем расчета NPSH во всасывающем трубопроводе (высота столба жидкости над всасывающим патрубком насоса). NPSH обозначает общую энергию (выраженную в метрах), которую жидкость имеет на всасе насоса.

Определить статический напор h_z , при котором оборудование можно установить в безопасном режиме, можно с помощью следующей формулы:

$$h_p + h_z \ge (NPSHr + 0.5) + h_f + h_{pv}$$
 (1)

где:

 ${f h_p}$ – это абсолютное давление применяемое для жидкостей со свободной поверхностью в приемном резервуаре, выраженное в м водяного столба; ${f h_p}$ - это отношение между барометрическим давлением и плотностью жидкости.

 ${f h_z}$ — высота всасывания между осью насоса и минимальным уровнемсвободной поверхности жидкости в приемном резервуаре, выражаемое в м.; ${f h_z}$ отрицательный, когда уровень ниже, чем ось насоса.

 ${f h_f}$ – гидравлическое сопротивление во всасывающей трубе и запорной арматуре, такой как: отводы, обратный клапан, задвижка, колени, и т.д.

 ${f h}_{pv}$ — давление насыщенных паров жидкости при рабочей температуре, выражаемое в м. водяного столба. hpv это отношение между P_v давлением насыщенных паров и плотностью (удельной массой) жидкости.

0.5 - коэффициент запаса

Максимальный допустимый напор на всасе для установки зависит от значения атмосферного давления (т.е. высота над уровнем моря, на которой устанавливается насос) и от температуры жидкости.

Чтобы помочь пользователю с температурой воды (4°С) и высотой над уровнем моря, нижеприведенные таблицы показывают падение в гидравлическом напоре в зависимости от высоты над уровнем моря, и потери на всасывании в зависимости от температуры.

Температура воды (°C)	20	40	60	80	90	110	120
Потери на всасе (м)	0,2	0,7	2,0	5,0	7,4	15,4	21,5

Отметка над уровнем моря (м)	500	1000	1500	2000	2500	3000
Потери на всасе (м)	0,55	1,1	1,65	2,2	2,75	3,3

Значение потерь потока показаны в таблицах на страницах 78-79 в данном каталоге. Для того, чтобы уменьшить до минимума, особенно в случаях большой высоты всасывания (более 4-5 м) либо в рабочих пределах с большим расходом, мы рекомендуем использовать всасывающую трубу с диаметром больше, чем диаметр всасывающего патрубка насоса. Хорошим решением всегда будет расположение насоса как можно ближе к жидкости, которую нужно перекачать.

Выполните следующий подсчет: Жидкость: вода при $\sim 15^{\circ}$ С у = 1 кг/дм³ Требуемый расход: 30 м³/час Требуемая высота напора: 43 м. Высота всасывания: 3.5 м.

Выбор - насос FHE 40-200/75, у которого требуемое значение NPSH, при 30 ${\rm M}^3/{\rm yac}$, 2.5 ${\rm M}$.

Для воды при 15°С: $h_p = P_a/\gamma = 10,33$ м, $h_{pv} = P_v/\gamma = 0,174$ м (0.01701 бар).

Сопротивление потока $H_{\rm f}$ во всасывающей трубе с учетом приемлемого клапана $\sim 1.2~{\rm M}.$

Подставляя параметры в формулу 1 числовые значения, мы получаем: 10,33+(-3,5)>(2,5+0,5)+1,2+0,17 откуда следует: 6.8>4.4

Таким образом, неравенство проверено.